On the Cut Locus in Alexandrov Spaces and Applications to Convex Surfaces
نویسندگان
چکیده
Alexandrov spaces are a large class of metric spaces that includes Hilbert spaces, Riemannian manifolds and convex surfaces. In the framework of Alexandrov spaces, we examine the ambiguous locus of analysis and the cut locus of differential geometry, proving a general bisecting property, showing how small the ambiguous locus must be, and proving that typically the ambiguous locus and a fortiori the cut locus are dense.
منابع مشابه
Properties of Distance Functions on Convex Surfaces and Alexandrov Spaces
If X is a convex surface in a Euclidean space, then the squared (intrinsic) distance function dist(x, y) is d.c. (DC, delta-convex) on X×X in the only natural extrinsic sense. For the proof we use semiconcavity (in an intrinsic sense) of dist(x, y) on X × X if X is an Alexandrov space with nonnegative curvature. Applications concerning r-boundaries (distance spheres) and the ambiguous locus (ex...
متن کاملOn new faster fixed point iterative schemes for contraction operators and comparison of their rate of convergence in convex metric spaces
In this paper we present new iterative algorithms in convex metric spaces. We show that these iterative schemes are convergent to the fixed point of a single-valued contraction operator. Then we make the comparison of their rate of convergence. Additionally, numerical examples for these iteration processes are given.
متن کاملFunctionally closed sets and functionally convex sets in real Banach spaces
Let $X$ be a real normed space, then $C(subseteq X)$ is functionally convex (briefly, $F$-convex), if $T(C)subseteq Bbb R $ is convex for all bounded linear transformations $Tin B(X,R)$; and $K(subseteq X)$ is functionally closed (briefly, $F$-closed), if $T(K)subseteq Bbb R $ is closed for all bounded linear transformations $Tin B(X,R)$. We improve the Krein-Milman theorem ...
متن کاملBASE AXIOMS AND SUBBASE AXIOMS IN M-FUZZIFYING CONVEX SPACES
Based on a completely distributive lattice $M$, base axioms and subbase axioms are introduced in $M$-fuzzifying convex spaces. It is shown that a mapping $mathscr{B}$ (resp. $varphi$) with the base axioms (resp. subbase axioms) can induce a unique $M$-fuzzifying convex structure with $mathscr{B}$ (resp. $varphi$) as its base (resp. subbase). As applications, it is proved that bases and subbase...
متن کاملOn some fixed points properties and convergence theorems for a Banach operator in hyperbolic spaces
In this paper, we prove some fixed points properties and demiclosedness principle for a Banach operator in uniformly convex hyperbolic spaces. We further propose an iterative scheme for approximating a fixed point of a Banach operator and establish some strong and $Delta$-convergence theorems for such operator in the frame work of uniformly convex hyperbolic spaces. The results obtained in this...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004